Урок 3. Репрезентативные системы
Если разобраться в том, как человек воспринимает информацию, получаемую от других людей, то можно найти в этом вопросе очень много нюансов и особенностей. То, что эффективно при общении с одними людьми, может оказаться совсем неэффективным при общении с другими. Кто-то понимает нас с полуслова, а до кого-то мы можем пытаться «достучаться» очень и очень долго, и часто попытки так и останутся безуспешными.
В то время как одни гадают над тем, почему же их взаимодействие с окружающими не приносит желаемого результата, другие применяют в своей повседневной жизни знания о репрезентации информации, т.е. о тех особенностях, которыми отличается преподнесение и восприятие разными людьми.
В двух наших предыдущих уроках мы познакомили вас с базовыми техниками нейролингвистического программирования. Но они касались именно языкового аспекта этого направления практической психологии. И было очень немного сказано о воздействии нейропроцессов на психику и восприятие человека.
Содержание:
- Репрезентативная система человека
- Виды репрезентативных систем
- Определение ведущей репрезентативной системы
- Рекомендации по использованию знаний о репрезентативной системе
- Проверочный тест
Из данного занятия вы узнаете о том, что такое репрезентативные системы, и какую роль они играют в НЛП, а также о том, какие существуют способы передачи опыта и виды систем восприятия (визуальная, аудиальная, кинестетическая и другие). В статье будут представлены и способы определения ведущей модальности (основной репрезентативной системы) у человека, включающие в себя различные методы диагностики, такие как тесты, специальные вопросы, наблюдения и т.д.
Репрезентативная система человека
Для начала следует напомнить, что под репрезентацией следует понимать процесс представления и выражения определённого опыта (мыслей, идей и т. п.) человеком. А человек, получая информацию, поступающую к нему из внешнего мира, всегда опирается на свои органы чувств. Человеческое тело снабжено огромным количеством чувствительных рецепторов, которые являются единственным способом получать информацию. Если говорить проще, то весь опыт человека формируют следующие ощущения (модальности): зрительные, слуховые, вкусовые, обонятельные и тактильные. Кроме них есть ещё и другие, но они играют второстепенную роль. Эти модальности и называются в НЛП репрезентативными системами.
Получая информацию при помощи наших органов чувств, мозг кодирует её и затем представляет в форме соответствующих данных, чувств и эмоций, даже малая часть которых способна вместить в себя целый диапазон всевозможных значений. И уже эти данные и значения человек оценивает и систематизирует. Вкратце, так происходит процесс восприятия. Но здесь следует учитывать главную пресуппозицию (истину, не подлежащую обсуждению) НЛП – «Карта не есть территория», где карта – это восприятие человеком реальности, а территория – это сама объективная реальность.
Получается, что то, как человек воспринимает полученную информацию, имеет лишь субъективное значение, не отражая объективное положение дел. У каждого человека имеется своя карта, являющаяся основой его восприятия, и эта карта, в силу своей индивидуальности, никогда не станет отражением истины. Но зато, зная о том, что у каждого человека есть своя карта, можно успешно этим пользоваться, что, в свою очередь, позволяет понимать людей на более глубоком уровне и доносить информацию в таком виде, в каком она будет воспринята максимально точно. Можно также оказывать влияние на карту человека, тем самым, меняя её.
В общем, если говорить более конкретно, то, зная о карте человека и его особенностях восприятия, а также о своей карте и своих особенностях, можно максимально повысить уровень взаимопонимания с окружающими и сделать любую коммуникацию максимально эффективной, взаимовыгодной и продуктивной. И одним из главных способов воздействия на себя и других является именно общение на основе репрезентативных систем. О них мы и поговорим далее.
Виды репрезентативных систем
В НЛП выделяют несколько основных репрезентативных систем, каждая из которых получает информацию только ей присущим способом, а после активирует определённые механизмы поведения. Всем этим процессом управляет центральная нервная система человека. К примеру, когда мы видим что-то, мозг передаёт нам воспринимаемое в виде изображения. Когда мы слышим что-то, то мозг трансформирует это в звуки. Какие-то внутренние ощущения переходят в чувства и эмоции.
И потом, когда мы вспоминаем какую-либо информацию, наш мозг подаёт сигнал памяти, и воспоминание выражается приблизительно в той же форме, в какой оно было сохранено. Именно на этих принципах и основана работа с репрезентативными системами.
Следует также заметить, что между репрезентативными системами и психическими и физиологическими признаками человека существует прямая взаимосвязь, на основе анализа которой можно определить тип личности человека и свойственные ей черты. Итак, рассмотрим виды репрезентативных систем.
Визуальная репрезентативная система
Визуальная репрезентативная система основывается на восприятии зрительных образов. Люди с такой системой (визуалы) организуют своё видение реальности через то, на что смотрят. То, что видят такие люди и картинки, возникающие в их воображении, оказывает непосредственное влияние на их эмоциональное состояние и внутренний мир.
ПРИЗНАКИ. Определить визуала можно по выпрямленной шее/спине, а также по взгляду, направленному вверх. Его дыхание поверхностное и, в большинстве случаев, грудное. При восприятии образа визуалы могут на мгновение задерживать дыхание, пока картина не сформируется. Их губы могут быть сжаты и выглядеть тонкими, а голос часто становится громким и высоким. Любой опыт запоминается визуалами в виде картин и образов, поэтому, когда приходится долго воспринимать чью-то речь или просто что-то слушать, они начинают скучать, а сам шум нередко их тревожит. Общаясь с такими людьми, нужно оказывать своей речи визуальную поддержку. В процентном соотношении на визуалов приходится 60% всех людей.
ВНЕШНОСТЬ. Визуалы обладают, как правило, худощавым телосложением, высоким ростом и несколько удлинённой талией. Часто поддерживают правильную осанку. При взаимодействии с ними желательно не загораживать им пространство для обзора того места, где они находятся.
Аудиальная репрезентативная система
Аудиальная репрезентативная система основывается на восприятии звуков. Люди с представленной системой (аудиалы) воспринимают информацию через процесс слушания. Вся информация воспринимается и запоминается ими, преимущественно, в форме звуковых впечатлений.
ПРИЗНАКИ. Узнать аудиала можно по часто перемещаемым в разные стороны глазам. Дыхание ритмичное и ровное, но отражающее его внутренние переживания. Если попросить такого человека описать какой-то свой опыт, то, в первую очередь, он будет думать о том, как выразить его в форме звука. Аудиал долго и много говорит, предельно чётко излагая мысли. При этом его речь может быть очень импульсивной. В разговоре часто доминирует и нередко утомляет. Обладает особой чувствительностью к звукам и часто разговаривает сам с собой. Общаясь с аудиалом, нужно стараться более грамотно и точно выстраивать свою речь. В процентном соотношении на аудиалов приходится около 20% всех людей.
ВНЕШНОСТЬ. Телосложение большинства аудиалов представляет собой нечто среднее между худощавыми и тучными людьми. В процессе разговора нередко жестикулируют и указывают на область ушей, а также наклоняются вперёд, как бы пытаясь быть ближе к тому, с кем общаются. Но при возникновении звуков в своём собственном сознании будут, наоборот, отклоняться назад. Следят за ритмом своей речи и тембром голоса.
Кинестетическая репрезентативная система
Кинестетическая репрезентативная система основывается на обонятельно-осязательном канале информации. Такие люди (кинестетики) очень любят тактильный контакт. Любые переживания, эмоции и ощущения лучше всего воспринимаются ими в том случае, если у них есть возможность прикоснуться к чему-то, ощутить это физически.
ПРИЗНАКИ. Распознать в человеке кинестетика можно, в первую очередь, по глазам: его взгляд часто имеет направленность «вниз-вправо». Дыхание кинестетика брюшное и глубокое, но в зависимости от испытываемых им ощущений, будет меняться. Губы, в большинстве случаев, мягкие и полные, а тон голоса низкий, глубокий, иногда хриплый и немного приглушённый. Во время разговора кинестетик будет говорить медленно, делая продолжительные паузы во время поиска соответствующей информации внутри себя. На кинестетиков приходится около 20% всех людей.
ВНЕШНОСТЬ. Если восприятие кинестетиков направлено внутрь себя, то, скорее всего, внешне это выразится в полноте и округлости тела. Если же восприятие направлено во внешний мир, то это отразит крепкость и мускулистость. Большинство кинетстетиков передвигается довольно медленно. Чтобы побудить их к активности часто требуется проявить физический контакт – похлопать или как-то поощрить. А при общении рекомендуется находиться поближе, т. к. кинестетики предпочитают близость.
Дигитальная репрезентативная система
Дигитальная репрезентативная система основывается на субъективно-логическом восприятии и осмыслении. Люди, использующие эту систему (дигиталы) функционируют на метауровне сознания, который включает в себя данные, полученные через визуальную, аудиальную и кинестетическую системы. Любая воспринятая ими информация находит отражение во всех проявлениях вышерассмотренных систем.
ПРИЗНАКИ. Понять, что человек дигитал, можно как по движению глаз, которые могут быть часто направлены вниз-влево или перемещаться из стороны в сторону, так и по тонким и сжатым губам. Его дыхание неровно и отличается короткими вздохами. Если говорить о позе, то плечи обычно расправлены, шея выпрямлена, руки скрещены на груди. Голос часто звучит монотонно, а говорит человек как будто «на автомате». К категории дигиталов относится лишь небольшой процент всех людей.
ВНЕШНОСТЬ. Учитывая то, что люди с дигитальной репрезентативной системой включают в себя свойства людей с визуальной, аудиальной и кинестетической системами, определить их точные внешние признаки довольно сложно. Можно только сказать, что внешне они могут выглядеть совершенно по-разному.
Подводя итог данному разделу, очень важно заметить, что людей с какой-либо одной репрезентативной системой не бывает. В реальной жизни люди всегда (осознанно или подсознательно) меняют их, исходя из ситуации. В зависимости от того, что воспринимается на данный момент времени, человек может обработать одно проявление визуально, а ко второму подойти с позиции аудиала, и наоборот.
Говоря об эффективности определения репрезентативных систем, нужно сказать, что одним из главнейших законов НЛП является следующий: то, что произносит человек, описывая любой свой опыт, может иметь не только метафоричное значение, но и буквально отражать происходящие в его сознании процессы во время репрезентации данных.
Из этого следует, что любая репрезентативная система непосредственно связана с речевым проявлением. Например, если человек говорит вам: «Мне представляется это так же, как и вам», то, скорее всего, при общении он испытывает потребность в визуальных образах. И чтобы «присоединиться» к нему, необходимо визуализировать картинку того, о чём идёт речь, и выразить её словесно.
Если же человек скажет: «Я всем своим существом ощущаю…. », то продолжать с ним разговор, будучи настроенным на позицию аудиала или визуала, будет крайне неэффективно, т.к. не произойдёт сонастройки. Здесь нужно беседовать, используя слова, близкие к ощущениям и физическому контакту. Только в таком случае удастся найти взаимопонимание.
Слова, которые наиболее часто использует человек в ходе разговора, основанные на ощущениях и отражающие его восприятие, называются предикатами (см. ниже по тексту). Умелое использование предикатов способствует быстрой сонастройке с другим человеком. Именно эта сонастройка, т.е. подстройка под другого человека, присоединение к его восприятию, карте, мировоззрению и модели репрезентации опыта имеет самое важное значение при установлении взаимной связи. Ведь, когда мы говорим с каким-либо человеком на «его» языке, мы становимся ближе к нему и ближе ему. А людям, как правило, приятно общаться с такими же, как они.
Но, как уже было замечено, для эффективной коммуникации важно не только знать о репрезентативных системах, но и уметь определять основную.
Определение ведущей репрезентативной системы
Несмотря на то что человек воспринимает любую получаемую им информацию при помощи всех репрезентативных систем, одну из них он использует гораздо чаще и интенсивней, чем все остальные. Именно эта система называется ведущей. И для того, чтобы определить, какая именно из систем ей является, в НЛП существует несколько действенных методов.
Во-первых, вы можете пройти специальный тест, на определение своей ведущей репрезентативной системы.
Тест на определение ведущей репрезентативной системы
Для начала ознакомьтесь с несложными правилами:
- При ответе на вопрос выбирайте тот вариант, который кажется наиболее предпочтительным и комфортным для вас в большинстве жизненных ситуаций. Если оба варианта не нравятся, то выбирайте наименее непривлекательный вариант.
- В силу того, что некоторые наши характеристики в течение жизни меняются, и один и тот же человек в 7 лет отличается от себя в 30 лет, постарайтесь отвечать на вопросы с точки зрения себя сегодняшнего. Когда вам дают выбор в некоторой гипотетической ситуации, отвечайте так, как будто бы это ситуация была совсем недавно и выбирайте то, что бы вы сделали на горизонте последних 1-2 лет.
- Тест можно проходить несколько раз, однако мы не рекомендуем это делать, лучше выберите время, когда вы сможете пройти его внимательно в один заход.
- Данные теста будут записаны после того, как вы ответите на последний вопрос и увидите подтверждение окончания теста. Если вы закончите тест ранее последнего вопроса и закроете страницу, данные не будут сохранены.
- Тест можно проходить любое количество раз, но помните, что сохраняется только последний. Если этот тест вы уже проходили, то в левом меню отобразится знак .
Cтатистика На весь экран
Во-вторых, как уже упоминалось выше, любая репрезентативная система отражается в движении глаз человека, темпе его речи, тембре голоса, манере держать осанку, положению шеи, жестикуляции, движениях рук и тела, любимых позах, а также в типе телосложения.
Эти характеристики важны, когда вам нужно определить не свою репрезентативную систему, а систему другого человека (далеко не всегда можно предложить каждому пройти тест). Чтобы понять, какая система является ведущей, нужно лишь знать признаки каждой из них (см. выше по тексту) и уметь их выявлять при общении с людьми и наблюдении за ними.
В качестве примера можно привести характерные для каждой системы положения глаз, называемые ключами глазного доступа:
Люди с ведущей визуальной репрезентативной системой при визуализации будут иметь расфокусированный взгляд, направленный прямо, при формировании визуального образа их взгляд будет направлен вверх-вправо, а если человек припоминает что-то, его взгляд будет направлен вверх-влево.
Люди с ведущей аудиальной репрезентативной системой при формировании звуковых образов будут направлять взгляд вправо, а при их припоминании – влево.
Люди с ведущей кинестетической репрезентативной системой при возникновении телесных ощущений и эмоций будут направлять взгляд вниз-вправо, а во время ведения внутреннего диалога вниз-влево.
А в-третьих, т.к. определение ведущей системы восприятия осуществляется на основе наблюдения за человеком в процессе взаимодействия с ним, наиболее тщательно должен производиться анализ его речи и определение наиболее часто используемых им слов-предикатов, о которых мы недавно упоминали. Ниже представлены предикаты, наиболее характерные для употребления людьми каждой из систем.
Визуальная система
- Существительные: перспектива, аспект, картина, иллюзия, точка зрения, нюанс, позиция и т.п.
- Глаголы: описывать, представлять, смотреть, прояснять, проявлять, наблюдать, подмечать, показывать, отображать, иллюстрировать, видеть и т.п.
- Прилагательные: широкий, узкий, размытый, ясный, открытый, удалённый, маленький, чёткий, затуманенный и т.п.
- Высказывания: «Я представляю», «На мой взгляд», «Мне показалось», «Вы видите», «Проливая свет», «Внося ясность» и т.п.
Аудиальная система
- Существительные: интонация, тембр, голос, диалог, шёпот, эхо, песня, звук, тональность, симфония, гармония, беседа, разговор и т.
п.
- Глаголы: обсуждать, слушать, спрашивать, звать, молчать, выражать, говорить, излагать, бубнить и т.п.
- Прилагательные: неслыханный, глухой, молчаливый, говорящий, мелодичный, немой, шумный, звонкий, громкий и т.п.
- Высказывания: «Говоря иначе», «Они задают тон», «Я хочу услышать», «Можно сказать», «Приглушив диалог» и т.п.
Кинестетическая система
- Существительные: напряжение, тяжесть, контакт, нагрузка, дыхание, движение, усталость, бодрость, вес, влияние и т.п.
- Глаголы: трогать, прикасаться, чувствовать, ощущать, поражать, сжимать, уравновешивать, воспринимать, двигаться и т.п.
- Прилагательные: невыносимый, чувствительный, мягкий, недвижимый, сердечный, горячий, неуравновешенный, выносливый, оторопевший и т.п.
- Высказывания: «Я чувствую что», «Воздействуя на ситуацию», «Крепко ухватившись», «Нести тяжёлую ношу», «Давайте окажем влияние» и т.п.
Естественно, это не все слова и выражения, выявляя которые можно определить ведущую репрезентативную систему человека. На самом деле, их великое множество и существует несчётное количество разных вариаций. Важно просто научиться определять основную линию, которой придерживается человек в своих высказываниях.
А теперь предлагаем немного попрактиковаться:
А ещё лучше научиться сопоставлять эти предикаты с физиологическими проявлениями, которыми характеризуется каждая из систем. Тогда сделать вывод будет гораздо проще, а вероятность его точности существенно увеличится.
Но кроме вышеизложенных особенностей, за которыми стоит наблюдать при общении с людьми, о предрасположенности человека к той или иной репрезентативной системе могут говорить также аспекты жизни и деятельности человека.
На что ещё обращать внимание при определении ведущей репрезентативной системы:
✔ | Как описывает человек свой опыт, переживания, воспоминания. |
✔ | Что больше всего любит вспоминать человек, какие моменты его жизни запомнились ему более остальных.![]() |
✔ | Внешний вид человека: опрятен ли он, насколько хорошо выглядит человек, какое внимание уделяет своей внешности. |
✔ | Излюбленные предметы. |
✔ | Любимые способы времяпрепровождения, интересы, хобби, увлечения. |
✔ | Что больше любит человек: смотреть кино, слушать музыку, читать книги, заниматься спортом. |
✔ | Любимый способ отдыха, т.е. что человек делает, если выдалась свободная минутка. |
✔ | Предпочтительный способ получения новой информации: видео, аудио, книги. |
✔ | Ориентация в пространстве. |
✔ | Желание общаться по телефону, скайпу, электронной почте. |
✔ | Обстановка в квартире и интерьер помещения, в котором живёт человек и т.д. |
Причём все эти показатели важны не только относительно тех людей, с которыми приходится общаться по работе или другим повседневным делам, но также и в отношении своих близких и самих себя. Ведь их определение поможет не просто научиться более продуктивно общаться, но и окажет огромное положительное влияние на собственное состояние и настроение в каждодневной жизни, внутренний мир дорогих людей, микроклимат в семье и отношение к жизни в целом.
Рекомендации по использованию знаний о репрезентативной системе
А в заключение урока мы приводим несколько полезных практических рекомендаций, опробовать которые и получить результат от которых вы сможете уже в самое ближайшее время.
- В первую очередь, определите свою ведущую репрезентативную систему. Найдите тесты на её определение (очень много тестов в Интернете) и пройдите их, понаблюдайте за собой, своими мыслями в течение дня, реакциями, способам вести диалог. Отмечайте слова, которые часто вставляете в свою речь. Это поможет вам лучше узнать себя. В дальнейшем вы сможете применять эти знания при общении с другими и сможете указать тем, с кем общаетесь на то, как взаимодействовать с вами более эффективно.
- Как известно, подавляющее большинство людей в мире – визуалы. Используйте это знание себе на пользу: всегда, общаясь с новыми людьми, делайте акцент на те методы воздействия, которые действуют на людей с визуальной репрезентативной системой. Используйте в речи больше образных выражений, приводите яркие красочные примеры, создавайте в воображении людей картинки того, о чём повествуете. Также держитесь на определённом расстоянии от людей, давая им простор для обозрения. После того как вы используете заранее подготовленные приёмы, вы сможете дать верную оценку уже наверняка и оценить эффективность своего общения и воздействия. И уже в случае, если ваши прогнозы не оправдались, следует прибегать к применению прочих техник.
- Хотя бы примерно определив ведущую репрезентативную систему человека, старайтесь не использовать такие слова-предикаты, которые не соответствуют его типу.
То, что будет предельно эффективно для визуала, совершенно не подойдёт аудиалу и кинестетику и т.п. Если вы видите, что то, что вы говорите, не оказывает должного влияния, то, скорее всего, вы неверно определили систему, и следует прибегнуть к эксперименту с новыми словами.
- При общении с людьми каждой репрезентативной системы старайтесь подстраивать под них темп своей речи и громкость голоса. С кинестетиками следует говорить медленно и не очень громко, т.к. это соответствует их «характеристикам». Это нужно для того чтобы информация поступала плавно, иначе они просто ничего не поймут из вашей речи, даже если будут очень стараться. С аудиалами несколько проще, т.к. они подсознательно настроены на слуховое восприятие и произносимое вами будет сразу же укладываться у них «по полочкам». Но здесь важно говорить не слишком медленно и не слишком тихо, т.к. изначальный посыл потеряет свой импульс и вам придётся начинать сначала. Визуалы вообще не очень хорошо воспринимают то, что им говорят.
Поэтому, независимо от темпа и громкости своей речи, старайтесь прибегать преимущественно к использованию визуальных характеристик. А ещё лучше – покажите им то, о чём говорите – тогда информация попадёт прямо в точку.
- Глаза очень хорошо отображают мыслительные процессы человека, т.к. контролировать движения глаз это способность редкая и похвастаться ей могут немногие. Знание этого факта помогает не только определить ведущую репрезентативную систему, но и выявить ложь. Запомните, человек, которому некомфортно, будет либо всегда отводить свой взгляд от вашего, и стараться избегать его. Либо, наоборот, он будет не отрываясь, смотреть вам в глаза, пытаясь показаться чрезмерно честным. Наблюдайте за тем, в какую сторону человек смотрит, разговаривая с вами: очень часто, если человек врёт, он будет смотреть вниз-влево, ведя сам с собой внутренний диалог и, скорее всего, пытаясь что-то придумать. Если человек смотрит вверх-вправо, значит, он создаёт какой-то образ, чтобы затем озвучить его вам.
Смотря вправо, человек подбирает подходящие фразы, а смотря вниз-вправо, человек ощущает какие-то эмоции, обусловленные контекстом вашей беседы. Такие методы определения лжи часто используются специалистами в спецслужбах.
- Знания о репрезентативных системах очень удобно использовать при воспитании детей, т.к. правильно выявленная ведущая система поможет выстроить такую стратегию воздействия на ребёнка, следуя которой сам процесс воспитания будет приносить ему только удовольствие, вызывая интерес, а родителю не будет в тягость, т.к. будет происходить легко и непринуждённо. При помощи влияния на репрезентативную систему ребёнка можно улучшить показатели в школе, определить его предрасположенности и отправить в подходящую секцию, научиться объяснять сложные вещи очень простым и доступным для понимания языком, а также избежать недопонимания и, как следствие, напряжённых ситуаций в семье.
- И, конечно же, нельзя оставить без внимания тему профессиональной сферы деятельности.
Зная ведущую репрезентативную систему, к примеру, своего начальника, отношения с которым складываются не очень благополучно, можно изменить ситуацию в выгодную для себя сторону, решить наболевшие проблемы и даже получить повышение или прибавку к зарплате. Для этого нужно научиться максимально правильно излагать свои мысли и доносить так, чтобы они были предельно понятны. Причём, сам начальник может даже не осознавать, что на него оказано прямое воздействие с вашей стороны.
- Это же касается и бизнеса: воздействуя на репрезентативные системы своих коллег и потенциальных партнёров, можно решать спорные вопросы с выгодой для себя и заключать перспективные контракты, убеждая людей в уникальности своего проекта. На сегодняшний день главы многих успешных компаний и корпораций используют подобные знания из области НЛП в управлении своими компаниями и взаимодействии с партнёрами и сотрудниками.
Исходя из всего вышеизложенного, можно сделать вывод, что репрезентативные системы это неотъемлемая часть личности каждого человека, а знания о них представляют собой мощнейший действенный инструмент по улучшению общения с окружающими людьми и своей собственной жизни. Главное – это применять их на практике и оттачивать своё мастерство.
Проверьте свои знания
Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только один вариант. После выбора вами одного из вариантов система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.
Cтатистика На весь экран
Далее переходим к разговору о невербальных средствах общения.
КириллЕвгений Буянов
← 2 Фрейминг и восприятие4 Невербальные средства →
Зрительное восприятие — Когнитивная способность
Что такое зрительное восприятие?
Способность прочитать текст кажется простым процессом: мы направляем глаза на буквы, видим их и знаем, что они говорят. Но на самом деле это чрезвычайно сложный процесс, основанный на работе серии структур мозга, которые специализируются на зрительном восприятии, а также на распознавании различных субкомпонентов зрения.
Воспринимать означает интерпретировать информацию об окружающей среде, полученную через органы чувств. Эта интерпретация зависит от наших когнитивных процессов и имеющихся знаний. Зрительное или визуальное восприятие можно определить как способность истолковывать информацию, достигающую глаз через свет видимой области спектра. Результатом интерпретации, которую выполняет наш мозг на основе этой информации, является то, что известно как зрительное восприятие или зрение. Таким образом, визуальное восприятие — это процесс, который начинается в наших глазах:
- Фоторецепция: световые лучи проходят через зрачки глаз и возбуждают клеточные рецепторы в сетчатке глаза.
- Передача и базовая обработка: сигналы, которые создают эти клетки, передаются через зрительный нерв в мозг.
Сначала сигнал проходит через оптические хиазмы (где информация из правого поля зрения направляется в левое полушарие, а из левого поля зрения — в правое полушарие), затем информация поступает к боковому коленчатому телу и таламусу.
- Обработка информации и восприятие: далее визуальная информация, полученная через глаза, отправляется к визуальной коре затылочной доли мозга. В этих структурах мозга информация обрабатывается и направляется в остальные части мозга, чтобы мы могли её использовать.
Характеристики, формирующие зрительное восприятие
Для того, чтобы получить представление о том, насколько сложна эта функция, попробуем представить, что делает наш мозг, когда мы видим простой футбольный мяч. Сколько факторов ему предстоит определить? Например:
- освещение и контрастность: мы видим, что имеется сосредоточение линий, более или менее освещённое и имеющее свой диаметр, который отличает его от других объектов окружающей среды и фона.
- Размер: это окружность около 70 см. в диаметре.
- Форма: имеет форму круга.
- Расположение: находится в трёх метрах от меня, справа. Могу легко до него добраться.
- Цвет: белый с чёрными пятиугольниками. Кроме того, если вдруг изменится освещение, мы бы знали, что его цвета — это чёрный и белый.
- Измерения: существует в трёх измерениях, так как это сфера.
- Движение: в настоящий момент без движения, но можно придать ему движение.
- Единица: имеется один, и он отличается от окружающей среды.
- Использование: служит для игры в футбол, предназначен для ударов ногами.
- Персональные отношения с объектом: похож на тот, который мы используем на тренировках.
- Имя: футбольный мяч. Этот последний процесс также известен как память на имена.
Если вам кажется, что это много шагов, задумайтесь о том, что наш мозг выполняет этот процесс постоянно и с невероятной быстротой. Кроме того, наш мозг не воспринимает информацию пассивно, а использует имеющиеся знания, чтобы «укомплектовать» информацию о том, что он воспринимает (поэтому мы знаем, что мяч является сферой, даже когда мы видим его плоским на фото). В затылочной доле мозга и прилегающих к ней отделах (височная и теменная доли) есть несколько областей, специализирующихся на каждом из ранее описанных процессов. Для корректного восприятия требуется слаженная работа всех этих отделов.
Когда мы смотрим на свой рабочий стол, наш мозг мгновенно идентифицирует все расположенные на нём объекты, что позволяет нам быстро взаимодействовать с ними. Зная это, легко понять огромное значение этого процесса в нашей повседневной жизни и то, насколько он важен для нормального функционирования в любой жизненной ситуации.
Примеры визуального восприятия
- Вождение автомобиля — это одна из наиболее сложных повседневных задач, в которой участвует множество когнитивных функций.
Визуальное восприятие является одной из основ вождения. Если нарушается один из процессов зрительного восприятия, водитель ставит под угрозу свою жизнь и жизни других людей. Важно быстро определять положение автомобиля относительно дороги и других транспортных средств, скорость, с которой они движутся, и т.д.
- Когда ребёнок находится на уроке, его острота зрения и восприятие должны быть оптимальными, чтобы не упустить из виду детали объясняемого материала. Нарушения этой способности могут привести к снижению успеваемости ребёнка.
- В изобразительном искусстве, например в живописи, зрительное восприятие — это всё. Когда мы хотим нарисовать картину и мечтаем сделать её реалистичной и привлекательной, мы должны проверить наше зрительное восприятие и проработать каждую деталь, оттенок цвета, перспективу… Конечно, чтобы оценить произведения искусства, нам также необходимо хорошее зрительное восприятие, недостаточно просто видеть.
- Визуальное восприятие имеет важное значение для любой деятельности, связанной с мониторингом или надзором.
Охранник, который ввиду нарушения восприятия не может корректно оценить происходящее на камерах наблюдения, не сможет надлежащим образом выполнять свою работу.
- Конечно, в повседневной жизни мы постоянно используем визуальное восприятие. Если мы видим на дороге приближающийся автобус, его изображение становится всё больше в нашем сознании. Тем не менее наш мозг способен интерпретировать изменения, которые не являются реальными. Мы продолжаем видеть автобус обычного размера независимо от того, насколько близко или далеко он от нас находится. Нам также необходимо визуальное восприятие для перемещения в пространстве, чтобы не перепутать лекарства, готовить еду, делать уборку дома и т.д.
Патологии и расстройства, связанные с проблемами в зрительном восприятии
Нарушения визуального восприятия могут сопровождаться различными проблемами и трудностями на разных уровнях.
Полная или частичная потеря зрения в результате повреждения органов восприятия ведет к неспособности восприятия (слепоте). Это может быть вызвано повреждением самого глаза (например, травма глаза), повреждением путей передачи информации от глаз к мозгу (например, глаукома) или повреждением отделов головного мозга, отвечающих за анализ этой информации (например, в результате инсульта или черепно-мозговой травмы).
Однако, восприятие — это не унитарный процесс. Существуют специфичные повреждения, которые могут нарушить каждый из вышеописанных процессов. Расстройства этого типа характеризуются поражением областей мозга, ответственных за те или иные процессы. Эти расстройства известны как визуальная агнозия. Визуальная агнозия определяется как неспособность распознавать известные объекты несмотря на сохранение остроты зрения. Классически агнозия делится на два типа: перцепционная агнозия (пациент может увидеть части объекта, но не способен понять объект в целом) и ассоциативная агнозия (пациент может распознать объект в целом, но не может понять о каком объекте идет речь). Трудно представить, как функционирует восприятие людей с этими расстройствами. Несмотря на то, что они могут видеть, их ощущения близки к тем, что испытывают страдающие слепотой. Кроме того, есть ещё более специфические расстройства, такие как, например, акинетопсия (неспособность видеть движение), дальтонизм (неспособность различать цвета), прозопагнозия (неспособность узнавать знакомые лица), алексия (приобретённая неспособность читать), и т.д.
Помимо этих расстройств, при которых утрачивается навык воспринимать визуальную информацию (или её часть), также возможны нарушения, при которых полученная информация искажается или вовсе не существует. Это может быть случай галлюцинаций при шизофрении или другие синдромы. Кроме того, учёными описан тип зрительных иллюзий у людей, которые потеряли зрение: Синдром Шарля Бонне. В этом случае у человека, потерявшего зрение, после длительного периода, в течение которого его мозг не получает визуальную активность, наблюдается самоактивация мозга, провоцирующая визуальные иллюзии, в которых пациенту видятся геометрические фигуры или люди. Однако, в отличие от галлюцинаций при шизофрении, люди с этим синдромом знают, что вещи, которые они видят, не являются реальными.
Как измерять и оценивать зрительное восприятие?
Зрительное восприятие помогает нам выполнять многие виды повседневной деятельности. Наша способность двигаться и взаимодействовать с окружающей средой, полной препятствий, напрямую зависит от качества зрительного восприятия. Таким образом, оценка восприятия может быть полезной в различных областях жизни: в учёбе (чтобы знать, сможет ли ребёнок видеть школьную доску или читать книги), в области медицины (чтобы знать, что пациент может перепутать лекарства или нуждается в постоянном присмотре), в профессиональных кругах (практически любая работа требует навыков чтения, наблюдения или контроля).
С помощью комплексного нейропсихологического тестирования мы можем эффективно и надёжно оценить различные когнитивные способности, в том числе зрительное восприятие. Тест, который предлагает CogniFit («КогниФит») для оценки зрительного восприятия, основан на классическом тесте NEPSY (Коркман, Кирк и Кемп, 1998). Благодаря этому заданию можно получить возможность декодировать элементы, представленные в упражнении, и количество когнитивных ресурсов, которыми располагает пользователь, чтобы понять и выполнить задачу наиболее эффективным образом. Помимо визуального восприятия, тест также измеряет память на имена, время отклика и скорость обработки информации.
- Тест на Декодирование VIPER-NAM: изображения объектов появляются на экране в течение короткого периода времени и исчезают. Вслед за этим появляются четыре буквы, и только одна из них соответствует первой букве названия объекта. Задание — правильно выбрать эту букву. Необходимо выполнить тест как можно быстрее.
Как восстановить или улучшить зрительное восприятие?
Зрительное восприятие, как и другие когнитивные способности, можно тренировать и улучшать. CogniFit («КогниФит») даёт возможность делать это профессионально.
Восстановление зрительного восприятия основывается на пластичности мозга. CogniFit («КогниФит») предлагает серию упражнений и игр, направленных на реабилитацию зрительного восприятия и других когнитивных функций. Мозг и его нейронные связи усиливаются за счёт использования функций, которые от них зависят. Таким образом, если мы регулярно тренируем зрительное восприятие, укрепляются соединения структур мозга, участвующие в восприятии. Поэтому, когда наши глаза посылают информацию в мозг, нейронные соединения будут работать быстрее и эффективнее, улучшая наше зрительное восприятие.
CogniFit («КогниФит») состоит из опытной команды профессионалов, специализирующихся на изучении процессов синаптической пластичности и нейрогенеза. Это сделало возможным создание программы персонализированной когнитивной стимуляции, которая адаптируется к потребностям каждого пользователя. Программа начинается с точной оценки зрительного восприятия и других основных когнитивных функций. На основании результатов оценки программа когнитивной стимуляции CogniFit («КогниФит») автоматически предлагает режим персональных когнитивных тренировок с целью укрепления визуального восприятия и других когнитивных функций, которые, по результатам оценки, нуждаются в улучшении.
Для улучшения зрительного восприятия крайне важно тренироваться регулярно и правильно. CogniFit («КогниФит») предлагает инструменты для оценки и реабилитации, позволяющие улучшать когнитивные функции. Для корректной стимуляции необходимо уделять 15 минут в день, два или три раза в неделю.
Программа когнитивной стимуляции CogniFit («Когнифит») доступна онлайн. Программа содержит разнообразные интерактивные упражнения в форме увлекательных игр для мозга, в которые можно играть с помощью компьютера. В конце каждой сессии CogniFit («КогниФит») покажет подробную диаграмму улучшений когнитивного состояния.
Физиология, Сенсорные рецепторы — StatPearls
Введение
Человеческое тело может достичь понимания мира через свои сенсорные системы. Сенсорные системы широко распространены по всему телу, в том числе те, которые обнаруживают мир непосредственно извне (экстерорецепторы), те, которые обнаруживают информацию от внутренних органов и процессов (интерорецепторы), и те, которые определяют ощущение положения и нагрузки (проприоцепция). 2][3][1]
Сенсорные рецепторы встречаются в специализированных органах, таких как глаза, уши, нос и рот, а также во внутренних органах. Каждый тип рецепторов передает отдельную сенсорную модальность, которая в конечном итоге интегрируется в единую систему восприятия. Эта информация достигается за счет преобразования энергии в электрический сигнал с помощью специализированных механизмов. В этом отчете мы обсудим базовый обзор сенсорных систем, сосредоточив внимание на сенсорных рецепторах.
Сотовый
Ниже приводится подробное обсуждение основных типов сенсорных рецепторов.
Рецепторы зрения
Ретиналь является основной молекулой зрения в сетчатке. Он может поглощать различные частоты света. Его изомер (цис-ретиналь) присутствует в родопсине, светочувствительном трансмембранном G-белке, существующем в палочках и колбочках; он содержит как цис-ретиналь, так и опсин.
Свет — это раздражитель, а сетчатка — это рецептор. Поглощение энергии превращает цис-ретиналь в транс-ретиналь. При этом конформационном изменении родопсин превращается в активированную форму, называемую мета-родопсином. Затем передача сигнала включает трансдуцин, многосубъединичный белок, связывая его с родопсином и вызывая превращение GDP в GTP; это приводит к высвобождению альфа-субъединицы, позволяющей ей связываться с фосфодиэстеразой цГМФ, что снижает уровень цГМФ. Это сигнализирует о закрытии натриевых каналов, которые обычно открыты в темноте. Интересно, что в этом сценарии именно гиперполяризация возникает при передаче световых сигналов. Эта гиперполяризация приводит к уменьшению количества глутамата, высвобождаемого в постсинаптическую мембрану, сигнализируя об изменении в головном мозге.[4]
Рецепторы слуха
Чтобы обсудить, как работают звуковые рецепторы, сначала мы должны упомянуть порядок событий. Звуковые волны достигают уха, создавая вибрацию барабанной перепонки. Эта энергия преобразуется в механическую энергию молоточка, наковальни и стремени. Стремя находится в непосредственной близости от овального окна, и оно усиливает механическую энергию улитки, заполненной жидкостью структуры с жидкостью, называемой перилимфой, путем прямого нажатия на нее. Улитка состоит из трех слоев: вестибулярной лестницы (восходящей части), средней лестницы и барабанной лестницы (нисходящей части). Кортиев орган находится на поверхности базилярной мембраны и содержит волосковые клетки, которые являются первичными рецепторами при создании звукового сигнала. Есть две разновидности волосковых клеток: внутренние и внешние. Внутренние клетки передают информацию к слуховому нерву, а внешние клетки механически усиливают низкий звук, поступающий в улитку.
Внутренние волосковые клетки прикреплены к текториальной мембране, к которой они отгибаются при движении мембран и жидкости улиткового канала. Когда стереоцилии на волосковых клетках изгибаются в сторону самых длинных ресничек, калиевые и потенциалзависимые кальциевые каналы открываются, и увеличивается приток ионов, что приводит к деполяризации. Эта деполяризация позволяет высвобождать нейротрансмиттеры в слуховом нерве в постсинапсе, генерируя нервные импульсы, которые распространяются от стереоцилий волосковых клеток в центральную нервную систему посредством передачи глутамата. Различение звука осуществляется за счет расположения первоначальных нервных импульсов из разных областей улитки.
Рецепторы равновесия
Внутреннее ухо чувствует баланс. При движении головы или импульсах давления звука эндолимфа колеблется и создает раздражение для рецепторов вестибулярной системы — маточки и мешочка. Внутри маточки и мешочка находятся пятна, содержащие волосковые клетки с мембранным покрытием из микроскопических отоконий, обнаруживающих движение эндолимфы. Те, что в мешочке, помогают ощущать вертикальные ускорения, тогда как те, что в утрикле, чувствуют горизонтальные ускорения. При изменении положения и, следовательно, изменении движения жидкости смещение этих волосковых клеток вызывает открытие рецепторных каналов, что приводит к распространению потенциалов действия от волосковых клеток к слуховому нерву. Скорость движения жидкости плюс качество жидкости дают больше информации о движении. В то время как маточка и мешочек обнаруживают линейное движение, полукружные протоки обнаруживают повороты аналогичным образом.
Вкусовые рецепторы
Вкусовые сосочки на языке и в ротоглотке помогают нам наслаждаться и различать то, что мы едим.[6] Различные вкусы включают сладкий, соленый, горький, умами и кислый. Вкусовая почка представляет собой набор вкусовых клеток, которые удлиняются на кончике, образуя поры, через которые могут проникать раздражители. Вдоль этих удлинений располагаются микроворсинки, выдающиеся в просвет рта. На другой стороне вкусовых клеток находятся нервные волокна, которые в конечном итоге передают химическое вкусовое сообщение в мозг.
Как и в большинстве нервных тканей, при связывании стимулов с рецептором рецептор деполяризуется и высвобождает нейротрансмиттер, который постсинаптическая клетка принимает и передает сообщение. Интересно, что более высокие концентрации создают более высокие потенциалы действия. Связывание стимула с каждым рецептором варьируется для каждого вкуса. Сладкий вкус, вкус умами и горький вкус определяются рецепторами, связанными с G-белком (GPCR). Эти рецепторы распознают и могут различать широкий спектр веществ, присоединяясь к различным доменам рецепторного комплекса. Оба сахара, а также белки вызывают ощущение сладкого. Глутамат натрия и аспартат у людей в основном вызывают вкус умами. Поскольку считается, что большинство горьких вкусов связаны с токсичными соединениями окружающей среды, эти рецепторы могут распознавать широкий спектр раздражителей; они включают около 30 типов GPCR. Натрий является стимулом для соленого вкуса, а протоны — стимулом для кислого вкуса. Эти стимулы вызывают открытие ионных каналов, что приводит к деполяризации и передаче нервных сигналов. Каждая вкусовая почка имеет множество типов вкусовых клеток, и от концентрации зависит, какой вкус воспринимается сильнее. Когда рецептор впервые сталкивается с сигналом, он демонстрирует резкое увеличение разряда, но затем постепенно акклиматизируется при постоянном воздействии раздражителя. Однако слюна постоянно смывает раздражители с рецепторов. Конечным пунктом назначения этих сигналов является первичная вкусовая кора лобной и островковой долей.
[7]
Рецепторы обоняния
Запах возникает за счет связывания молекул одоранта с рецепторами на мембране ресничек, вызывая потенциал действия, который посылает эту информацию в мозг. Эти системы используют рецепторы G-белка вместе с аденилатциклазой. Первоначально ученые считали, что молекулы напрямую связаны с рецепторами и что каждый рецептор потенциально идентифицирует определенный тип запаха. Однако Йошиока и соавт. предложил более правдоподобную теорию, поскольку водород и его изотоп воспринимаются как совершенно разные запахи. Авторы связывают это с постулатом, называемым «моделью колебаний молекул». Когда вещество связывается со своим рецептором, субстрат позволяет электронам спускаться по их градиенту, и благодаря их специфической колебательной энергии он вызывает поток химических изменений и последующую передачу сигналов в мозг.
Рецепторы на коже
Далее следует обсуждение различных рецепторов кожи. Сигналы от кожи могут передаваться физическими изменениями (механорецепторы), температурой (терморецепторы) или болью (ноцицепторы). Чувствительные рецепторы есть во всех слоях кожи.
Механорецепторы
Существует шесть различных типов механорецепторов, обнаруживающих безобидные раздражители в коже: те, что расположены вокруг волосяных фолликулов, тельца Пачини, тельца Мейснера, комплексы Меркеля, тельца Руффини и LTM С-волокна (механорецепторы с низким порогом).[8] Механорецепторы реагируют на физические изменения, включая прикосновение, давление, вибрацию и растяжение. Волосяные фолликулы могут обнаружить легкое прикосновение; Тельца Мейснера в дермальных сосочках обнаруживают вдавливание и скольжение предметов; Тельца Пачини в более глубоких слоях дермы обнаруживают вибрацию; Комплексы Меркеля в базальном эпидермисе создают представление о структуре и текстуре; Тельца Руффини обнаруживают растяжение; LTM C-волокна обнаруживают приятные, легкие тактильные ощущения.[8] Инкапсулированные рецепторы включают тельца Мейснера и тельца Пачини. В рецепторах, которые реагируют на растяжение, присутствуют «каналы, активируемые растяжением», что приводит к деполяризации за счет притока натрия [9]. ] Чем меньше рецептивные поля, тем точнее определение формы, формы и текстуры раздражителей.
Рецепторы, которые не сигнализируют о боли, имеют более низкие пороги сигнальной активности. Они используют нервы бета-типа волокна А, а нервы с более высоким порогом, которые сигнализируют о боли, используют А-дельта и С-волокна. Волокна С и А-дельта реагируют на болезненные температуры, механические воздействия и химические вещества.[10]
Проприорецепторы также являются механорецепторами. Примеры включают мышечные веретена и сухожильный орган Гольджи, которые реагируют на сокращение/расслабление мышц и напряжение мышц соответственно.
Терморецепторы
В организме есть как тепловые, так и холодовые терморецепторы. Эти рецепторы демонстрируют постоянную разрядку до своей определенной температуры, и когда возникает ощущение противоположной температуры, происходит внезапное прекращение разрядки рецепторов.
Холодовые рецепторы в основном воспринимают температуру от 25 до 30°С. Температуры ниже этой вызывают выброс разрывных разрядов. При прикосновении к опасно горячим предметам (свыше 45°С) может возникнуть кратковременное ощущение холода из-за парадоксального возбуждения холодовых рецепторов. Тепловые рецепторы реагируют примерно на диапазон температур от 30 до 46°С. Более высокие температуры могут привести к уменьшению возбуждения этих рецепторов.[8]
Вредное тепло определяется белками TRPV1, TRPM3 или ANO1, а также капсаицином [11]. Однако TRPV3 может быть более ответственным за обнаружение теплых температур. Существует избыточность рецепторов; их точные механизмы неизвестны.
Напротив, считается, что при более низких температурах ионные каналы TRPM8 являются одним из многих ответственных рецепторов. Эти рецепторы способны обнаруживать температуру от ниже 16°С до 26°С. Считается, что другие неизвестные рецепторы также играют роль в обнаружении холода.
Ноцицепторы
Ноцицепторы помогают сигнализировать о боли, связанной с температурой, давлением и химическими веществами. Как Дубин и др. обсуждает, большинство сенсорных рецепторов имеют низкую чувствительность, чтобы диктовать все ощущения в мозг. Однако, когда дело доходит до боли, ноцицепторы сигнализируют только тогда, когда тело достигает точки повреждения тканей. Воспалительные маркеры увеличиваются во время повреждения ткани, связываются с рецепторами и инициируют болевые сигналы либо снаружи, либо во внутренних органах. Одно из семейств ионных каналов, которые присутствуют на ноцицептивных нейронах, называется ионными каналами TRP (транзиентный рецепторный потенциал). Те сигналы, которые активируют ноцицептивные рецепторы, включают экстремальные температуры, высокое давление и химические вещества, вызывающие повреждение тканей [12]. Различные волокна передают информацию о боли; это А-дельта и С волокна. Эти волокна различаются по своей миелинизации и диаметру нерва и, следовательно, по скорости передачи. Болезненные температуры, неудобное давление и химические вещества в основном используют С-волокна.
С-волокна различаются по способности воспринимать все три типа стимулов. Волокна А-дельта маленькие и немиелинизированные и в первую очередь участвуют в термической и механочувствительной боли. Ноцицепторы используют в основном глутамат, а также субстанцию P, пептид, связанный с геном кальцитонина, и соматостатин, чтобы сигнализировать о боли.
Кроме того, теория ворот предполагает, что безобидные раздражители могут преобладать над болезненными, если оба присутствуют одновременно.
Вовлеченные системы органов
Многие ощущения генерируются и передаются через специализированные органы чувств, другие, такие как внутренние органы, содержат ноцицепторы, которые активируются после воспаления и повреждения тканей.
Органом чувств глаза является сетчатка. Вместе с роговицей и хрусталиком свет фокусируется на доске визуализации, где информация может преобразовываться из физической материи в электрическую энергию, которая поддается интерпретации и пониманию внешнего мира мозгом.
Кожа имеет множество сенсорных рецепторов в эпидермисе, дерме и гиподерме, что позволяет различать осязание, например разницу в давлении (легкое или глубокое). Другие качества внешнего мира, оцениваемые сенсорными рецепторами кожи, включают температуру, боль и зуд.
Внутреннее ухо содержит волосковые клетки в улитке для преобразования звуков и преддверии, которое обеспечивает наше чувство равновесия.
Запах воспринимается за счет связывания молекул с хеморецепторами в ресничках обонятельного эпителия в носу.
Посредничество в ощущении нагрузки и положения осуществляется через специализированные структуры мышечных веретен и суставных капсул, которые содержат механорецепторы, определяющие угол сустава, длину и силу мышц.
Восприятие вкуса происходит за счет растворения молекул во вкусовых сосочках во рту и ротоглотке.
Механизм
Все сенсорные сигналы начинаются как рецепторные потенциалы. Эти потенциалы приводят к высвобождению нейротрансмиттера, который возбуждает соответствующий нерв для отправки информации в мозг. Так же, как и при обычной передаче нервных сигналов, для создания рецепторного потенциала требуется превышение порогового уровня мембранного потенциала. Интересно, что для сенсорных рецепторов чем больше превышен порог, тем выше частота потенциалов действия. Все рецепторы имеют свойство обнаруживать слабые и интенсивные сигналы. Однако есть спад или плато, когда стимул достигает уровня максимальной стимуляции. В этот момент рецептор не может увеличить свой пусковой потенциал.
Сенсорные рецепторы обладают свойствами, общими почти для всех типов рецепторов, здесь мы обсудим некоторые из них.
Рецептивное поле
Местоположение сенсорного нейрона в окружающей его популяции нейронов жизненно важно для определения местоположения его нейронного сообщения, будь то тактильное, зрительное, слуховое или другое. Область тела, где раздражитель может воздействовать на сенсорный рецептор, называется рецептивным полем . Этот атрибут в форме физического измерения жизненно важен для кодирования точного местоположения стимула. Области, которые содержат большее количество небольших рецепторных полей, могут достигать лучшего пространственного разрешения, что проявляется в центральной ямке сетчатки и участках кожи, таких как кончики пальцев и губы.
Принцип маркированной линии
Сенсорные системы функционируют, реагируя только на стимулы, для которых они специфичны, и впоследствии преобразуя их в нейронное сообщение, которое следует по дискретному пути к мозгу. Это составляет принцип помеченных линий, который сохраняет специфичность класса рецепторов в кодировании сенсорной модальности для обозначенной области мозга. Это относится к соматосенсорным системам, а также к другим специализированным системам, таким как зрительная и слуховая.
Адаптация
Адаптация — это общее свойство всех сенсорных рецепторов. Поскольку стимул постоянно возбуждает рецептор, будет снижаться скорость потенциалов действия. Хотя рецепторы могут адаптироваться к постоянному, неизменному раздражителю, если происходит изменение, будь то потеря стимула или изменение его интенсивности, рецептор способен реагировать.
Топографическое представление
Первичные сенсорные области коры содержат нейроны, которые формируют организацию, зависящую от местоположения или качества. Соматотопическое представление отображается в первичной сенсорной коре, представляя искаженную анатомическую версию тела, называемую сенсорным гомункулом. Другим примером является слуховая система, где она отображает тонотопическую карту в первичной слуховой коре, относящуюся к звуковым частотам.
Клиническое значение
Понимание огромного количества сенсорных систем тела имеет решающее значение в области медицины. Открывая сенсорные рецепторы и исследуя их механизмы, мы можем понять патофизиологию различных присутствующих расстройств. Одной из очень актуальных тем является хронический болевой синдром, где понимание ноцицепторов имеет жизненно важное значение для разработки новых фармацевтических решений и планов лечения этой изнурительной проблемы.
Ссылки
- 1.
Сотников О.
С. Чувствительная иннервация головного мозга (первичные интерорецепторные нейроны головного мозга и их асинаптические дендриты). Neurosci Behav Physiol. 2006 г., июнь; 36 (5): 453-62. [PubMed: 16645757]
- 2.
Цай А.Дж., Джуммарра М.Дж., Аллен Т.Дж., Проске У. Сенсорное происхождение человеческого чувства положения. Дж. Физиол. 2016 15 февраля; 594 (4): 1037-49. [Бесплатная статья PMC: PMC4753260] [PubMed: 26537335]
- 3.
Proske U. Роль мышечных проприорецепторов в ощущении положения конечностей человека: гипотеза. Дж Анат. 2015 авг; 227(2):178-83. [Бесплатная статья PMC: PMC4523320] [PubMed: 25973697]
- 4.
Йошиока Т., Сакакибара М. Физические аспекты сенсорной передачи при зрении, слухе и обонянии. Биофизика (Нагоя-ши). 2013;9:183-91. [Бесплатная статья PMC: PMC4629681] [PubMed: 27493557]
- 5.
Экдейл Э.Г. Форма и функции внутреннего уха млекопитающих. Дж Анат. 2016 февраль; 228(2):324-37.
[Бесплатная статья PMC: PMC4718163] [PubMed: 25911945]
- 6.
Lee AA, Owyang C. Sugars, рецепторы сладкого вкуса и реакция мозга. Питательные вещества. 2017 24 июня; 9(7) [Бесплатная статья PMC: PMC5537773] [PubMed: 28672790]
- 7.
Чандрашекар Дж., Хун М.А., Рыба Н.Дж., Цукер К.С. Рецепторы и клетки вкуса млекопитающих. Природа. 2006 16 ноября; 444 (7117): 288-94. [PubMed: 17108952]
- 8.
Delmas P, Hao J, Rodat-Despoix L. Молекулярные механизмы механотрансдукции в сенсорных нейронах млекопитающих. Нат Рев Нейроски. 2011 март; 12(3):139-53. [PubMed: 21304548]
- 9.
Moll I, Roessler M, Brandner JM, Eispert AC, Houdek P, Moll R. Клетки Меркеля человека — аспекты клеточной биологии, распределения и функций. Eur J Cell Biol. 2005 март; 84 (2-3): 259-71. [PubMed: 15819406]
- 10.
Bewick GS, Banks RW. Механотрансдукция в мышечном веретене. Арка Пфлюгера. 2015 Январь; 467 (1): 175-90.
[PMC free article: PMC4281366] [PubMed: 24888691]
- 11.
Zhang X. Молекулярные сенсоры и модуляторы терморецепции. Каналы (Остин). 2015;9(2):73-81. [PMC бесплатная статья: PMC4594430] [PubMed: 25868381]
- 12.
Дубин А.Е., Патапутян А. Ноцицепторы: датчики болевого пути. Джей Клин Инвест. 2010 ноябрь; 120(11):3760-72. [Бесплатная статья PMC: PMC2964977] [PubMed: 21041958]
13.1 Сенсорные рецепторы – анатомия и физиология
Перейти к содержимому
Цели обучения
К концу этого раздела вы сможете:
- Описывать различные типы сенсорных рецепторов
Основная роль сенсорных рецепторов заключается в том, чтобы помочь нам узнать об окружающей нас среде или о состоянии нашей внутренней среды. Различные типы стимулов из различных источников принимаются и преобразуются в электрохимические сигналы нервной системы. Этот процесс называется сенсорная трансдукция . Это происходит, когда стимул обнаруживается рецептором, который генерирует градиентный потенциал в сенсорном нейроне. Если градуированный потенциал достаточно силен, он заставляет сенсорный нейрон генерировать потенциал действия, который передается в центральную нервную систему (ЦНС), где он интегрируется с другой сенсорной информацией, а иногда и с более высокими когнитивными функциями, чтобы стать сознательным восприятием этого события. стимул. Затем центральная интеграция может привести к двигательной реакции.
Описание сенсорной функции термином «ощущение» или «восприятие» является преднамеренным различием. Ощущение – это активация сенсорных рецепторов на уровне раздражителя. Восприятие — это центральная обработка сенсорных стимулов в осмысленный паттерн, включающий осознание. Восприятие зависит от ощущений, но не все ощущения воспринимаются. Рецепторы — это структуры (а иногда и целые клетки), которые обнаруживают ощущения. Рецептор или рецепторная клетка изменяются непосредственно под воздействием раздражителя. Трансмембранный белковый рецептор представляет собой белок в клеточной мембране, который опосредует физиологические изменения в нейроне, чаще всего посредством открытия ионных каналов или изменений в клеточных сигнальных процессах. Некоторые трансмембранные рецепторы активируются химическими веществами, называемыми лигандами. Например, молекула в пище может служить лигандом для вкусовых рецепторов. Другие трансмембранные белки, которые нельзя точно назвать рецепторами, чувствительны к механическим или термическим изменениям. Физические изменения в этих белках увеличивают поток ионов через мембрану и могут генерировать градиентный потенциал в сенсорных нейронах.
Стимулы в окружающей среде активируют специализированные рецепторы или рецепторные клетки в периферической нервной системе. Разные типы раздражителей воспринимаются разными типами рецепторов. Рецепторные клетки можно разделить на типы на основе трех различных критериев: тип клетки, положение и функция. Рецепторы можно структурно классифицировать на основе типа клеток и их положения по отношению к воспринимаемым ими раздражителям. Их также можно классифицировать функционально на основе кода .трансдукция стимулов, или как механический раздражитель, свет или химическое вещество изменили потенциал клеточной мембраны.
Типы структурных рецепторов
Клетки, которые интерпретируют информацию об окружающей среде, могут быть либо (1) нейроном, имеющим свободное нервное окончание (дендриты), встроенным в ткань, которая будет получать ощущение; (2) нейрон, который имеет инкапсулированное окончание , в котором дендриты инкапсулированы в соединительную ткань, что повышает их чувствительность; или (3) специализированный рецепторная клетка , которая имеет отдельные структурные компоненты, интерпретирующие определенный тип стимула (рис. 13.1.1). Болевые и температурные рецепторы в дерме кожи являются примерами нейронов со свободными нервными окончаниями. Также в дерме кожи расположены пластинчатые и осязательные тельца, нейроны с инкапсулированными нервными окончаниями, реагирующие на давление и прикосновение. Клетки сетчатки, реагирующие на световые раздражители, являются примером специализированной рецепторной клетки, фоторецептор .
Градуированные потенциалы в свободных и инкапсулированных нервных окончаниях называются генераторными потенциалами. Когда они достаточно сильны, чтобы достичь порога, они могут напрямую запускать потенциал действия вдоль аксона сенсорного нейрона. Однако потенциалы действия, запускаемые рецепторными клетками, являются непрямыми. Градуированные потенциалы в рецепторных клетках называются рецепторными потенциалами. Эти градуированные потенциалы вызывают высвобождение нейротрансмиттера на сенсорный нейрон, вызывая градуированный постсинаптический потенциал. Если этот градуированный постсинаптический потенциал достаточно силен, чтобы достичь порога, он вызовет потенциал действия вдоль аксона сенсорного нейрона.
Рисунок 13.1.1 – Классификация рецепторов по типу клеток: Типы рецепторов клеток можно классифицировать на основе их структуры.
Другой способ классификации рецепторов основан на их расположении относительно раздражителей. экстероцептор представляет собой рецептор, расположенный рядом со стимулом во внешней среде, такой как соматосенсорные рецепторы, расположенные в коже. Интероцептор обнаруживает стимулы от внутренних органов и тканей, такие как рецепторы, воспринимающие повышение кровяного давления в аорте или каротидном синусе. Наконец, проприоцептор представляет собой рецептор, расположенный рядом с движущейся частью тела, такой как мышца или суставная капсула, который интерпретирует положение тканей при их движении.
Функциональные типы рецепторов
Третья классификация рецепторов основана на том, как рецептор преобразует стимулы в изменения мембранного потенциала. Стимулы бывают трех основных типов. Некоторые стимулы представляют собой ионы и макромолекулы, которые воздействуют на трансмембранные рецепторные белки путем связывания или прямой диффузии через клеточную мембрану. Некоторые стимулы представляют собой физические изменения в окружающей среде, которые влияют на потенциал мембраны рецепторных клеток. Другие стимулы включают электромагнитное излучение видимого света. Для человека единственной электромагнитной энергией, воспринимаемой нашими глазами, является видимый свет. У некоторых других организмов есть рецепторы, которых нет у людей, например, датчики тепла змей, датчики ультрафиолетового света пчел или магнитные рецепторы у перелетных птиц.
Рецепторные клетки могут быть дополнительно классифицированы на основе типа стимулов, которые они передают. Химические раздражители могут быть обнаружены хеморецепторами , которые обнаруживают химические раздражители, такие как химические вещества, которые вызывают обоняние. Осморецепторы реагируют на концентрации растворенных веществ в жидкостях организма. Боль — это, прежде всего, химическое, а иногда и механическое ощущение, которое интерпретирует наличие химических веществ в результате повреждения тканей или интенсивных механических раздражителей через ноцицептор . Физические стимулы, такие как давление и вибрация, а также ощущение звука и положения тела (равновесие) интерпретируются через механорецептор . Другой физический раздражитель, который имеет собственный тип рецептора, — это температура, которая воспринимается терморецептором , который чувствителен к температурам выше (тепло) или ниже (холод) нормальной температуры тела.
Спросите любого, что такое органы чувств, и он, скорее всего, назовет пять основных чувств: вкус, обоняние, осязание, слух и зрение. Однако это не все органы чувств. Наиболее очевидным упущением в этом списке является баланс. Кроме того, то, что называется просто прикосновением, может быть далее подразделено на давление, вибрацию, растяжение и положение волосяного фолликула в зависимости от типа механорецепторов, которые воспринимают эти ощущения прикосновения. Другие упускаемые из виду чувства включают восприятие температуры терморецепторами и восприятие боли ноцицепторами.
В области физиологии чувства можно разделить на общие и специальные. Общий смысл — это тот, который распространяется по всему телу и имеет рецепторные клетки в структурах других органов. Примерами этого типа являются механорецепторы в коже, мышцах или стенках кровеносных сосудов. Общие чувства часто вносят вклад в осязание, как описано выше, или в проприоцепцию (положение тела) и кинестезию (движение тела), или в 0219 висцеральное чувство , которое наиболее важно для вегетативных функций. Особое чувство (обсуждается в главе 15) – это чувство, которому посвящен определенный орган, а именно глаз, внутреннее ухо, язык или нос.
Каждое из чувств относится к сенсорной модальности . Модальность относится к тому, как информация кодируется в восприятии. Основные сенсорные модальности можно описать на основе того, как преобразовывается и воспринимается каждый стимул. К химическим чувствам относятся вкус и обоняние. Общее чувство, которое обычно называют осязанием, включает химическое ощущение в форме ноцицепции или боли. Давление, вибрация, растяжение мышц и движение волос под действием внешнего раздражителя воспринимаются механорецепторами и воспринимаются как прикосновение или проприоцепция. Слух и равновесие также воспринимаются механорецепторами. Наконец, зрение включает в себя активацию фоторецепторов.
Перечисление всех различных сенсорных модальностей, которых может насчитываться до 17, включает в себя разделение пяти основных чувств на более конкретные категории, или субмодальностей большего чувства. Индивидуальная сенсорная модальность представляет собой ощущение определенного типа раздражителя. Например, общее осязание, известное как соматоощущение , можно разделить на легкое давление, глубокое давление, вибрацию, зуд, боль, температуру или движение волос.
В этой главе мы обсудим общие чувства, которые включают боль, температуру, осязание, давление, вибрацию и проприоцепцию. Мы обсудим особые чувства, к которым относятся обоняние, вкус, зрение, слух и вестибулярный аппарат, в главе 15.
Соматосенсор (Прикосновение)
Соматоощущение считается общим чувством, в отличие от субмодальностей, обсуждаемых в этом разделе. Соматосенсоры — это группа сенсорных модальностей, связанных с прикосновением и положением конечностей. Эти модальности включают давление, вибрацию, легкое прикосновение, щекотку, зуд, температуру, боль, проприоцепцию и кинестезию. Это означает, что его рецепторы не связаны со специализированным органом, а вместо этого распределены по всему телу в различных органах. Многие из соматосенсорных рецепторов расположены в коже, но рецепторы также находятся в мышцах, сухожилиях, суставных капсулах и связках.
Двумя типами соматосенсорных сигналов, которые передаются свободными нервными окончаниями, являются боль и температура. Эти два модальности используют терморецепторы и ноцицепторы для преобразования температурных и болевых раздражителей соответственно. Температурные рецепторы стимулируются, когда локальные температуры отличаются от температуры тела. Некоторые терморецепторы чувствительны только к холоду, а другие — только к теплу. Ноцицепция – это ощущение потенциально повреждающих раздражителей. Механические, химические или термические раздражители, превышающие установленный порог, вызывают болезненные ощущения. Напряженные или поврежденные ткани выделяют химические вещества, которые активируют рецепторные белки в ноцицепторах. Например, ощущение боли или жара, связанное с острой пищей, затрагивает капсаицин , активная молекула острого перца. Молекулы капсаицина связываются с трансмембранным ионным каналом ноцицепторов, который чувствителен к температуре выше 37°C. Динамика связывания капсаицина с этим трансмембранным ионным каналом необычна тем, что молекула остается связанной в течение длительного времени.
Из-за этого снижается способность других раздражителей вызывать болевые ощущения через активированный ноцицептор. По этой причине капсаицин можно использовать в качестве местного анальгетика, например, в таких продуктах, как Icy Hot™.
Если провести пальцем по текстурированной поверхности, кожа пальца начнет вибрировать. Такие низкочастотные колебания воспринимаются механорецепторами, называемыми клетками Меркеля, также известными как кожные механорецепторы I типа. Клетки Меркеля располагаются в базальном слое эпидермиса. Глубокое давление и вибрация передаются пластинчатыми (Пачиниевыми) тельцами, которые представляют собой рецепторы с инкапсулированными окончаниями, расположенными глубоко в дерме или подкожной ткани. Легкое прикосновение передается инкапсулированными окончаниями, известными как тактильные (мейснеровские) тельца. Фолликулы также завернуты в сплетение нервных окончаний, известное как сплетение волосяного фолликула. Эти нервные окончания обнаруживают движение волос на поверхности кожи, например, когда насекомое может ходить по коже. Растяжение кожи передается рецепторами растяжения, известными как луковичные тельца. Луковичные тельца также известны как тельца Руффини или кожные механорецепторы II типа.
Другие соматосенсорные рецепторы находятся в суставах и мышцах. Рецепторы растяжения контролируют растяжение сухожилий, мышц и компонентов суставов. Например, вы когда-нибудь растягивали мышцы до или после тренировки и замечали, что вы можете растягиваться только до тех пор, пока ваши мышцы не сокращаются и возвращаются в менее растянутое состояние? Этот спазм является рефлексом, который инициируется рецепторами растяжения, чтобы избежать разрыва мышц. Такие рецепторы растяжения могут также предотвратить чрезмерное сокращение мышцы. В скелетной мышечной ткани эти рецепторы растяжения называются мышечными веретенами. Сухожильные органы Гольджи аналогичным образом преобразовывают уровни растяжения сухожилий. Луковичные тельца также присутствуют в суставных капсулах, где они измеряют растяжение компонентов скелетной системы внутри сустава. Кроме того, пластинчатые тельца обнаруживаются рядом с суставными капсулами и обнаруживают вибрации, связанные с движением вокруг суставов. Типы нервных окончаний, их расположение и стимулы, которые они передают, представлены в таблице ниже.
Механорецепторы соматоощущения (таблица 13.1) | |||
---|---|---|---|
Имя | Историческое (одноименное) название | Местоположение(я) | Стимулы |
Свободные нервные окончания | * | Дерма, роговица, язык, суставные капсулы | Боль, температура, механическая деформация |
Механорецепторы | Диски Меркеля | Эпидермо-дермальное соединение, слизистые оболочки | Низкочастотная вибрация (5–15 Гц) |
Луковичное тельце | Тельца Руффини | Дерма, суставные капсулы | Растяжка |
Тактильное тельце | Тельца Мейснера | Сосочковая дерма, особенно на кончиках пальцев и губах | Легкое прикосновение, вибрация ниже 50 Гц |
Пластинчатое тельце | тельца Пачини | Глубокая дерма, подкожная клетчатка, суставные капсулы | Глубокое давление, высокочастотная вибрация (около 250 Гц) |
Сплетение волосяного фолликула | * | Оборачивают волосяные фолликулы в дерме | Движение волос |
Мышечное веретено | * | В соответствии со скелетными мышечными волокнами | Сокращение и растяжение мышц |
Орган растяжения сухожилий | Сухожильный орган Гольджи | В соответствии с сухожилиями | Растяжение сухожилий |
Соматоощущение относится к общим чувствам, которые представляют собой те сенсорные структуры, которые распределены по всему телу и в стенках различных органов. (Обратите внимание, что все особые чувства являются в первую очередь частью соматической нервной системы, поскольку они сознательно воспринимаются посредством мозговых процессов, хотя некоторые особые чувства способствуют вегетативной функции). Общие чувства можно разделить на соматосенсорное, которое обычно считается осязанием, но включает осязание, давление, вибрацию, температуру и восприятие боли. Общие чувства также включают висцеральные чувства, которые отделены от функции соматической нервной системы тем, что они обычно не поднимаются до уровня сознательного восприятия.
Клетки, которые преобразуют сенсорные стимулы в электрохимические сигналы нервной системы, классифицируются на основе структурных или функциональных аспектов клеток. Структурные классификации основаны либо на анатомии клетки, взаимодействующей со стимулом (свободные нервные окончания, инкапсулированные окончания или специализированная рецепторная клетка), либо на том, где клетка расположена относительно раздражителя (интерорецептор, экстерорецептор, проприоцептор). В-третьих, функциональная классификация основана на том, как клетка преобразует стимул в нервный сигнал. Хеморецепторы реагируют на химические раздражители и являются основой для обоняния и вкуса. К хеморецепторам относятся осморецепторы и ноцицепторы для баланса жидкости и восприятия боли соответственно. Механорецепторы реагируют на механические раздражители и являются основой для большинства аспектов соматоощущения, а также являются основой слуха и равновесия во внутреннем ухе. Терморецепторы чувствительны к изменениям температуры, а фоторецепторы чувствительны к световой энергии.
Нервы, передающие сенсорную информацию от периферии к ЦНС, представляют собой либо спинномозговые нервы, связанные со спинным мозгом, либо черепные нервы, связанные с головным мозгом. Спинномозговые нервы имеют смешанные популяции волокон; некоторые из них являются двигательными волокнами, а некоторые — сенсорными. Чувствительные волокна соединяются со спинным мозгом через задний корешок, который прикрепляется к заднему корешковому ганглию.